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Abstract. The ring with N weak link5 in the magnetic held is examined. The exact form of 
the partition function of the model was obtained. what prmits one to evaluate all the 
thermodynamic characteristics of the model. We concentrated on the heat capacity and 
particularly on the susceptibility. which exhibits quite remarkable features in the finite-size 
limit. In addition, the influence of the weak-link strength distribution is explored. 

1. Introduction 

The aim of this paper is to investigate the magnetic properties of the superconducting 
circuit with N Josephson junctions. Arrangements such as these have been studied 
intensively ever since Jaklevic et a1 [l] have developed a DC superconducting quantum 
interference device (SQUID) consisting of two parallel Josephson junctions in circuit. 
Similarly, devices made from a symmetric circuit with four Josephson junctions have 
been pursued [2,3]. The fluxdynamicsof ringcontainingfive weak links were numerically 
studied in [4]. 

Our approach starts from the studies investigating layers of weak bound granular 
superconductors in the magnetic field. These systems can be well described by the 
frustratedXYmodel (see, e.g., [SI), in which the frustrationis induced by the magnetic 
field. Moreover, in recent years, two-dimensional arrays of superconducting grains 
joined through weak links have been prepared [6-9-91 by the modern photomicro- 
lithographic techniques. Likewise, spherical superconductive grains of the size about 
1 pm dispersed in a polymerized ferrofluid composite exposed to a magnetic field form 
a ring-shaped circuit [lo] and weak links between grains might arise. 

The remainder of the paper is organized as follows. The description of the model 
and the main results are presented in section 2, and section 3 deals with some comments 
on the validity of our approach. 

2. The model 

Consider an isolated closed loop created by the superconductive grains connected 
through Josephson junctions. These grainsare assumed to be smallowing to thecoherent 
length of a bulk superconductor; thus each grain can be controlled, by one dynamic 

0953-8984/92@92253 + 10 $04.50 @ 1992 IOP Publishing Ltd 2253 



2254 

variable qi. The high-capacitance approximation, in the framework of which the fluc- 
tuation effects may be neglected, allows one to describe the system by the above- 
mentioned frustrated X Y  model (sometimes called the plane rotator model) with the 
Hamiltonian 
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H = - Z J  ,  COS(^, - I - AI) q N t I  =q1 (2.1) 
, = I  

where J is coupling energy for the tunnelling junction between the jth and the (j + 1)th 
grain dependingon a medium via which the weak connection is induced; the phase angle 

ensuring the gauge invariance.A is the vector potential, q5" = h/2e is the magnetic flux 
quantum and the integral is taken along a line joining the centres of jth and (j t 1)th 
grains. In the case of a closed circuit, one gets 

%4 (2.3) 
N 

X A j = -  A.dl=%f 
,'I @U 

regardless of the arrangement of grains along the loop, where the frustration/= q5/&, 
as a number of magnetic fluxquantum through the area of circuit was introduced. Non- 
integer values offmean that there is no frustration in the system or, in other words, it is 
not possible for the system to attain a state which minimalizes all the bondings at the 
same time. From equations (2.1) and (2.3) it is clear that it  suffices to restrict our 
considerations to -0.5 < f <  0.5 and, as the exchangef+-famounts to  a change in 
the direction of the external magnetic field, only the interval 0 s / S  0.5 is examined 
below. This means, presumably, that the model manifests an oscillatory behaviour in 
the magnetic field because of quantification of the magnetic flux through the loop area. 

The thermodynamicpropertiesofthesystem aredeterminedby theclassical partition 
function (with /3 = l/k,T) 

which provides the free energy 
F =  -(l/P)InZ. (2.5) 

In terms of F the isothermal differential susceptibility reads 
x = -(i/p,l)(aZF/aH')T (2.6) 

c, = -r(a2F/ar2).. (2.7) 
and the specific heat capacity is given by 

Substitutingequation (2,l)intoequation (2.3) and utiliingthe mathematical identity 
known as the Jacobi-Anger expansion 

where I,, is the modified nth-order Bessel function. after some algebra one gets the 
statistical partition sum of N Josephson junctions: 

1 . Y  

ZK = n f n ( / 3 J , )  exp(i2xfn). (2.9) ,> = - x , = I 

This result holds for a closed circuit of arbitrary shape. In what follows. a circular 
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Figure 1. The plot of the specific heat capacity Venus the inverse temperature for fruslration 
(a)  f = 0 and ( b )  f = 0.5. The arrow indicates the increasing number N of the weak links in 
the circuit from 10 to SO. 

loop will be assumed for concreteness, and the typical linear size of each grain is set 
equal to 2a. Then the area of loop for a large number N of grains is 

S(N) = (Na)*/n .  (2.10) 

Of course, if one takes an interest in the behaviour of low-body systems. then 
equation (2.10) can be re-expressed dependingon the shape of the grains. For example, 
if a circular loop containing not too many spherical grains is considered, then the area 
limited by the interior contour of the circuit (here it  is supposed that the penetration 
depth of a grain is much less than a) is 

S(N) = [N/tan(n/N) - n ( N  - 2)/2]a2 

which gives equation (2.10) for large N. 
Before exploring the thermodynamic characteristics of the model due to equation 

(2.9), we look for a moment at the special case T =  0. Now the current conservation 
requires that all the phase differences are identical [ll]: 

- v , + ~  = 2 z ” N  m = 0, il, 22,  

for regularly distributed grains. This straight away yields for the free energy 

(2.11) 

From here according to equation (2.6) we have the susceptibility 
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Figure2.Thereduceddifferentialsuceptibilityof rhecircuit with lOup to IlOgrainsvernus 
the inverse temperalure for frustration (a) f = 0, (b)  f = 0.25. ( c )  f = 0.4 and ( d )  f = 0.5. 
The arrow indicates the increase in number of grains. 

(2.12) 

The asymptotic behaviour x - N3 is a typical feature for such systems [12]. Further, 
for large N the differential susceptibility does not depend on the magnetic field whether 
frustration occurs or not. 

Now let us proceed to the study of the finite temperature properties of the model. 

2.  I ,  The ideal arranged circuit 

First we turn to an idealized situation of the perfectly homogeneous system with all the 
coupling energies J, the same and denoted as J. The partition sum can be recast: 
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Figure 3. The plot of the reduced differential sus- 
ceptibility of the 100 weak links in the loop versus 
frustration for various temperatures JJk,T = 3.  6. 
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Figure 4. The temperature dependence of the IW- 
grain loop susceptibility for various values of frus- 
tration. 

% 

Z, = 2 I : ~ J )  exp(i2zfn). (2.13) 

Although we focusour attention primarily on the magnetic properties, we shall also 
mention the heat capacity. The heat capacity dependence on the temperature and 
number N of grains for two frustrations f = 0 and f = 0.5 is depicted in figure l ( a )  and 
I(b),  respectively. The heat capacity of the closed loop reaches that of a linear chain of 
grains as N increases. The partition function of the linear chain may be obtained by 
integrating equation (2.4) successively over q i  to qN without the constraint q I  = pN, 
which yields 

ZN = P;-'(PJ) (2.14) 

n - - =  

and the heat capacity of the chain per particle can be inferred [13]: 

CN/k,N= [ (N -  1)/W((JP)*{I - I ~ @ ' ) / J f i l o @ J )  - [Ii(PJ)/Iu(PJ)I2}. (2.15) 

That is to say, the heat capacity of a closed circuit formed by Josephson junctions 
does not depend on the magnetic field in the thermodynamic limit; nonetheless for not 
too many grains (roughly up to 50) an effect of the magnetic field is observable. 

On the other hand, the behaviour of the susceptibility of this simple model might 
seem to be fairly surprising. In regular two-dimensional arrays, where a discontinuous 
variation in the nature of transition and formation of superlattices as the frustration is 
varied is expected [5]. the properties of system have to be examined for any frustration of 
itsown. Now the frustration plays the role of acontinuous parameter. Thesusceptibility 
versus temperature for f= 0, 0.25, 0.4 and 0.5 is shown in figures 2(a), 2(b), 2(c) 
and 2(d), respectively. A more detailed analysis revealed that three regions in the 
temperature dependence of the susceptibility can be established. 

In region I ,  for 0 s f < 0.25 the model exhibits a pure diamagnetic behaviour at any 
temperature. 

InregionII,for0.25 < f < 0.5atemperatureexists.dependingon thesizeofsystem, 
at which the low-temperature diamagnetic susceptibility changes into the high-tem- 
perature paramagnetic susceptibility (this is also evident from figures 3 and 4). 

In region 111, in the fullyfrustratedsystemf= 0.5, when the condition of2npenod- 
icity is violated mainly because X;, Ai = n, the susceptibility is paramagnetic in the 
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Figure 6. The plot of the zero susceptibility lem- 
perature T,oblained from figure ?(c) vcrsus the num- 
ber of weak links for f = 0.4. 

whole temperature range. Asisvisible infigureZ(d) thesusceptibilitydivergesfor T-r  0 
despite thefinitenessofthesystem in thiscaseand,on thecontrary, for aninfinitesystem 
the divergent behaviour ceases (see appendix). 

Of course, finite-size effects need not be neglected. In the first frustration region a 
temperature T,. the temperature of the locus of the susceptibility inflection point, is 
introduced and, in figure 5 .  T, for 10-1 IO weak links N is presented for the casef= 0. 
The inverse proportion observed in figure 5 was obtained also for other values of 
frustration from this interval. which testifies to the loss of the diamagnetic behaviour of 
the circuit in the thermodynamic limit. 

Similarly, forfbetween 0.25 and 0.5 the temperature Tl,can be assigned to the zero- 
susceptibility value as a characteristicof the circuit. A typical dependence T,,on number 
of grains forf= 0.4 is shown in figure 6. As is seen, Tu - 1/N again, according to the 
preceding conclusion that there is no diamagnetic range for susceptibility for large N .  

In the thermodynamic limit. when the concrete shape of the circuit is irrelevant, it  
will suffice to calculate the initial susceptibility of the infinite linear chain of Josephson 
junctions. To do this in the easiest way the fluctuation-dissipation theorem for the 
susceptibility can be utilized: 

(2.16) 

where the correlation function (cos(cp" - p,)) between the two phases at a distance r 
can be calculated in the same manner as the statistical function (2.9). This results in 

Equations (2.16) and (2.17) yield in the thermodynamic limit the divergence just for 
T = 0 as is expected for a I D  system. 

2.2. The disorder circuit 

Realstructuresdespite the afore-mentioned discussion are not characterized by identical 
Josephson junctions: in other words, a certain distribution of the coupling energies [4} 
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is always present because of, for example,'the various size of grains between which the 
weak link is realized. Therefore it is of importance to explore how the disorder of the 
system modifies the above results. 

First the simplest case with only one weak link which varies its coupling energy is 
considered: 

J, = J 
Jk = p J  

j =  1.2, .  , .,k - 1 , k f  1 . .  . . N .  (2.18) 

This approximation corresponds to the gradual disconnection of the loop asp tends 
to zero. Using equations (2.9) and (2.6) and taking equation (2.18) into account, figures 
7(a)  and 7(b) were obtained, where the susceptibilities forf= 0 and 0.5, respectively, 
are depicted versus the parameter p. The line in figure 7(a )  pertains to the zero tem- 
perature and comes from equations (2.11) and (2.6). Under any circumstances the 
susceptibility increases proportionately top for small p and rapidly saturates for p > 1. 

Finally we examined the influence of the coupling constant distribution on the 
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Figurts. The reduced differential suscep~ibiliryof 30 weak links with (J,) distributed accord- 
ing to the box-shaped distribution as a function of the disorder parameter a for J/ksT = 20 
and ( 0 )  f = 0 and (b)  = 0.5. 
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Figure 9. The same as in figure 8 but for the log-normal distribution 

magnetic properties of the model. We have chosen two suitable distribution functions: 
(1) the box-shaped distribution 

Jl,(l - o ) < J < J O ( I + O )  

otherwise 
(2.19) 

(2) the log-normal distribution 

P ( J )  = (~/GJ) exp[-111~(~/~~)/2o] (2.20) 

where J0 and adenote the usual appropriate distribution parameters in both cases. 
As the direct calculation of the configuration integrals cannot be executed explicitly 

we resorted to computer simulation. We carried out the susceptibility average through 
200 realizations with given distributions for the circuit composed of 30 grains forf= 0 
and 0.5 at the temperature J p  = 20. The results for the box-shaped distribution of 
coupling energies are presented in figures 8(a) and 8(b) and for the log-normal dis- 
tribution in figures 9(a )  and 9(b). In both cases the susceptibility decreases considerably 
with growing disorder and vanishes when valuesJ near zero are reached statistically, in 
agreement with preceding results. 
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3. Final remarks 

In this paper the simplified model of a ring with N weak links has been studied in the 
high-capacitance limit. As to the discussion about the validity of the high-capacitance 
limit for a chain made up of photolithographic junctions the reader is referred to [14]. 
Of course, for too small grains this approximation no longer holds and including the 
capacitance term in the Hamiltonian becomes necessary. This leads to solving the 
quantum mechanics system. 

The inductance effects, in turn, are not taken into account, which fails of course for 
largeloops. Theestimationoftheupper numberofweaklinksin thecircuit followsfrom 
the relation $ L f ;  = Jand  it yields N,,,L,x = 2fi/p,,eaf,. Substituting a typical value for the 
criticalcurrent f, through the Josephson junction of about 1 PA 17.81 and a grain radius 
Q = 1 ,um, one can estimate that N,,, = 10'. 

We believe that, it might be intriguing to undertake an experimental investigation 
of such a model to compare the results presented above with real results. The best 
observablephenomenaare to befoundforthestronglyhomogeneoussampleforinstance 
and other similar preliminary predictions may be made with respect to the conclusions 
of the article. The utilization of N weak-link elements for the measurement of weak 
magnetic fields and low temperatures is also conceivable. 

Appendix 

In this appendix we try to elucidate the divergence of the susceptibility for the fully 
frustrated model f =  0.5. The ratio of the sums in the susceptibility obtained from 
equations (U), (2.6) and (2.13) given by 

can be estimated in the limit of large Nas  follows: 

xz - ( l / P ) [ - l y ( f l J )  +4Ir (bJ)  - .  , . J / [ f i y ( f l J )  - 21;Y(PJ) + ,  . .] - U P  [{I (flJ)/f,l(flJ)l~v/{l - 2[1, ( f l J ) / f " ( P J ) P I  (A2) 

where only the leading terms of the sums were left, In the limit of low temperatures the 
Bessel function of imaginary argument reduces to 

I, ( x )  = exp( - k2/2x) /d \ /2 . .  x -+ x (A3) 

so that the susceptibility may be rewritten as 

x = 1/b 1lIexp(N/2flJJ) - 21 p- X. 

Now, if the thermodynamic limit is taken, the susceptibility vanishes. Conversely, 
for finite N a critical temperature 

T, = ( J  In 4)/kBN ('45) 

can be found when the susceptibility diverges in perfect consistency with figure 2(d) ,  
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although the divergence region around T, is not displayed as the precision of our 
computer calculations for large Nand /3 is beyond the necessary accuracy. For T <  T, 
we suppose an oscillatory character of susceptibility due to sign alternation in equation 
MI). 
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